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Abstract Scenes in computer animation can have extreme
complexity, especially when high resolution objects are
placed in the distance and occupy only a few pixels. A useful
technique for level of detail in these cases is to use a sparse
voxel octree containing both hard surfaces and a participating
medium consisting of microflakes. In this paper, we discuss
three different methods for approximating the distribution
of normals of the microflakes, which is needed to compute
extinction, inscattering of attenuated direct illumination, and
multiple scattering in the participating medium. Specifically,
we consider (a) k means approximation with k weighted rep-
resentatives, (b) expansion in spherical harmonics, and (c) the
distribution of the normals of a specific ellipsoid. We com-
pare their image quality, data size, and computation time.
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1 Introduction

Scene models for computer animation such as in Fig. 1 often
have extreme complexity if the original detailed models are
used for objects in the distance. One method of dealing with
this data explosion is to have multiple levels of detail, so
that simplified models can be used for more distant objects.
Another method is to summarize into a volume data structure
the aspects of the model that affect rendering. We are using
the latter method, with a sparse voxel octree (SVO), of the
sort described by [9]. The polygons (or micropolygons, see
[2]) are scan converted into the leaves of the octree structure,
averaging the plane equation, plane normal variance, spec-
ular and diffuse color, and other shading quantities such as
surface roughness. These quantities are then averaged further
into the higher octree levels.Whenmarching along a viewing
ray through the octree, cells are selected at the octree level
appropriate to the ray differential (randomly jittered to break
up any visible transitions in shading from different SVO lev-
els), and the ray is intersected with the cell’s stored average
surface plane, as clipped to the cell volume. The first point
intersected is shaded by combining the plane normal vari-
ance into the surface roughness. We refer to this as the “hard
surface” method.

One of our goals was to model distant vegetation, as in
Fig. 1. The hard surface method does not work well for this,
because we are intersecting the ray with the average plane,
while the octree cell should actually represent many small
plant leaves inside its volume. In addition, even a single tiny
leaf in the volumemay cause an intersectionwith its extended
plane, making the apparent size of the leaf bloom larger.
To solve these problems, we treat the leaf surfaces in an
octree cell as a volume density of microflakes (infinitesimal
pieces of flat surface) and use volume rendering methods to
composite the inscattering and extinction along the ray as
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Fig. 1 A wide angle view of a forest of 218 trees of various species, path traced using the spherical harmonic microflake normal distribution. The
sparse voxel octree used 2,434,796,669 bytes, while a single pine tree polygon representation needed 1,816,829,593 bytes

it steps through the octree cells. Both the inscattering and
the extinction depend on the distribution of the microflake
surface normals. This paper compares several methods of
representing this distribution by approximations specified by
a small number of parameters. Ideally, such approximations
should give:
1. A compact representation,
2. Efficient averaging up the octree hierarchy,
3. Efficient computation of the extinction coefficient,
4. Efficient computation of the inscattering,
5. Efficient sampling of the scattered ray direction for global

illumination path tracing, and
6. Final renderings that well approximate converged ray

traced or path traced images of the original geometry.
The contributions of this paper are:
– Two new methods to approximate a distribution of
normals, by k means representatives and by spherical
harmonics (SH), and

– Their comparison with each other and the SGGX dis-
tribution of Heitz et al. [8], which uses the distribution
of normals of a specific ellipsoid.

Section2 discusses related work, and Sect. 3 describes
the three approximations and how their fitting parameters
are computed. Section4 discusses how the extinction and
inscattering are computed from the distribution ofmicroflake
normals. Section5 shows how sample directions for path
tracing are computed, Sect. 6 discusses optimizations for
double-sided microflakes, and Sect. 7 describes compression
of the data. Section8 presents image accuracy, data size, and
timing results, which are discussed in Sect. 9. The appendix
has mathematical details for the SH approximation.

2 Related work

The fundamental paper on level of detail wasCrow [4],which
first suggested designing several different polygonal models
for the same object. This idea was refined by Hoppe to create
the simplified models automatically [11], and continuously
transition between them [12].

Octrees have long been used to describe sparse volume
data and speed up ray tracing. Neyret [23] used a hierarchical
octree volume with the reflectance in each cell represented
by the distribution of normals of an ellipsoid. Heitz et al.
[8] did something similar in the context of the SVO of [9].
We have also used a version of this SVO, enhanced to store
the various approximations to the distribution of microflake
normals, and with some new compression mechanisms.

The basic principles of volume rendering participating
media, accounting for the optical effects of extinction and
inscattering, are explained in [20]. Normally, the extinction
is isotropic, independent of the viewing direction. The scat-
tering phase function, giving the distribution of scattering
directions ωo from an incoming direction ωi , is also nor-
mally isotropic, in the sense that it depends only on the angle
between ωi and ωo. However, in the case of an anisotropic
distribution of microflake normals, these isotropies are not
present, and the full dependence of the extinction and inscat-
tering on bothωo andωi must be accounted for. This involves
the distribution of visible normals, which accounts for both
masking and foreshortening for bumpy surfaces [6], and for
foreshortening only in the case ofmicroflakes, as discussed in
[8], and briefly in Sect. 4 below. An early computer graphics
paper considering the optical effects of a microflake normal
distribution is [21], which simulated multiple scattering in
a tree canopy. More recently, Jacob et al. [13] discussed the
radiation transport equation for a general anisotropic dis-
tribution of microflake normals, and also the corresponding
diffusion approximation. Zhao et al. [32,33]modeled cloth as
a collection of fibers extracted from micro-CT and modeled
the microfacet normal distribution of a fiber as a gaussian in
the dot product of the microflake normal and the fiber axis.

3 Representing the distribution of microflake
normals

Let g(x, ωn) be the local probability distribution of the
microflake normals with direction ωn at position x , let ρ(x)
be the density of total microflake area per unit volume, and
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let h(x, ωn) = ρ(x)g(x, ωn). Then, h(x, ωn)dωn is the total
area per unit volume of microflakes with normals within a
solid angle dωn about ωn . We will usually mean this scaled
h(x, ωn)when we say the distribution of microflake normals
below, even though this is not a probability distribution.

Wewill compare three differentmethodsof approximating
this distribution of microflake normals, by:

(a) A finite number k of weighted δ-functions of unit direc-
tion,

(b) An SH expansion of fixed maximum order L , or
(c) the distribution of normals of an origin-centered ellip-

soid.

If the degrees of freedom are all expressed as floats, then
method (a) requires 4k floats, method (b) requires (L + 1)2

floats, and method (c) requires only six floats at each SVO
node. Later we will discuss compression of these data.

When scan converting polygons into the SVO, we recur-
sively split the polygons by the slicing planes defining the
SVO volume cells, until the fragments are the size of the
leaf cells. For the hard surface contribution, we compute the
area inside each intersected leaf cell and add that area and
also the area-weighted diffuse color, specular color, unit nor-
mal, and other shading parameters like surface roughness, to
the accumulated values for that leaf cell. After all the poly-
gons are scan converted, we add these weighted quantities
to the parent cells up the octree hierarchy and then divide
all these summed quantities by the sum of the weights. We
also compute the variance of the normals. An SVO cell can
contain both hard surfaces and microflakes, and the colors
of the microflakes are averaged separately into the SVO as
above, so that the plant leaves can have a different color than
the hard surface trunks and branches. The calculations to fit
each of the three microflake normal distribution approxima-
tion methods into this SVO framework are described next.

The kmeans algorithm for method (a) converges to a local
minimum of its cost function, which depends on the initial
cluster center normal representatives chosen. To get a good
spread in the initial representatives, a first pass through the
polygon fragments finds up to k representative normals per
octree cell. We take a new area-weighted representative nor-
mal whenever there are less than k and the current polygon
fragment normal differs from all existing representative nor-
mals by more than a threshold angle. Otherwise we add the
area-weighted fragment normal to the representative towhich
is closest in direction. Then, in subsequent passes through the
polygons, we reassign each polygon fragment’s contribution
to the representative to which it is closest and compute new
weighted average representative directions, thus implement-
ing a weighted k means algorithm. When all polygons are
handled, we use the same procedure to go up the octree hier-
archy, assigning child cell weighted representatives to parent

cell representatives, and computing the area-weighted aver-
age of the normals in each representative’s group. Currently,
we use only two passes through all the polygons in comput-
ing the k means for the leaf cells of the SVO, since such
passes are expensive, but more passes to propagate the leaf
representatives into the k means of their ancestor cells up
the hierarchy, since this does not need the full polygon data.
The resulting approximation is an area-weighted sum of the
δ-functions for the representative unit normals in each SVO
cell. We also save the variance of the normals in the cluster
assigned to each representative, estimated from the length
of the weighted average normal using the method of [29],
which does not require a separate pass through the polygon
data. This variance per representative is the fourth of the 4k
floats mentioned above. For greater accuracy, we could store
the covariance matrix of the distribution of the microfacet
normals assigned to each representative normal, as in [25],
as done for method (c) below, but this would take 6 extra
floats per representative normal, instead of one.

Method (b) fits the distribution of normals using the real
spherical harmonic basis functions Ylm(θ, φ).

Since the SH basis functions are orthonormal, the best L2

fit to a function h(θ, φ), of the form

h(θ, φ) ≈
L∑

l=0

l∑

m=−l

hlmYlm(θ, φ) (1)

has coefficients given by

hlm =
∫ 2π

0

∫ π

0
Ylm(θ, φ)h(θ, φ) sinθ dθ dφ. (2)

So for an area-weighted δ-function representing the contri-
bution of a polygon fragment with a constant unit normal to
an SH basis function coefficient, this integral is just the area
times that basis function evaluated at that normal. These con-
tributions are added into the leaf cells and then into parent
cells up the octree hierarchy. There is no need to divide by
the sum of the weights, because the goal is to approximate
an area-weighted density h(x, ωn). However, since this is an
area per unit volume, the accumulated sum must be divided
by the volume of the octree cell. [This is also the case for
method (a).] We have experimented with spherical harmonic
orders L up to 4.

For method (c), Heitz et al. [8] define the SGGX distribu-
tion of squared projected areas of an ellipsoid as a quadratic
form in the unit projection direction vector. They define it in
the coordinate system of the unit eigenvector directions (the
ellipsoid’s major, semi-major, and minor axis directions) by
a diagonal matrix of the squared projected areas in these
directions and use the rotation matrix formed from these unit
eigenvector directions to transform this quadratic form into
the world coordinate system. They prove that the square root
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of this quadratic form evaluated at any other direction gives
the projected area of the ellipsoid in that direction. For a
polygon fragment from a smooth surface, they use a “surface-
like” ellipsoid with unit projected area in the surface normal
direction, and very small projected area in the perpendicular
directions, while for a fragment of a curve (for fur, hair, or
pine needles), they use a “fiber-like” ellipsoid, with a small
projected area along the curve tangent direction, and unit
projected areas along perpendicular directions.

For the images in that paper, they just accumulate the
six independent elements of the positive definite 3 by 3
symmetric matrix for the quadratic form into the leaf cells
and then into the octree hierarchy, but they admit that this
does not properly accumulate the distributions of normals
of child cells into parents. So we use the two pass method
they describe in their Sect. 4.3, subsection “Parameter Esti-
mation from Arbitrary Distributions.” In the first pass, we
accumulate the covariance matrices for the distributions. The
covariance matrix contribution to an octree leaf cell of a
clipped polygon fragment with unit normal column vector ω

is simply the fragment’s area times the outer product matrix
ωωT. These contributions are summed in each leaf cell and
then up the hierarchy. At the end of this pass, we compute
and save the eigenvectors of the resulting symmetric covari-
ance matrix in each octree cell. In a second pass through
the polygons, we compute the projected areas of the polygon
fragments in these eigenvector directions, not just for the leaf
cells, but for all the octree cells encountered in the recursive
polygon slicing. Then, we use the square of these summed
projected areas to get the diagonal matrix for the quadratic
form in the eigenvector coordinate system and transform it
into the world coordinate system using the matrix of unit
eigenvectors.

4 Computing extinction and inscattering

The microflake area per unit volume near a position x , as
projected in the viewing direction ωo, is

σt (x, ωo) =
∫

	

h(x, ωn)〈ωn, ωo〉dωn, (3)

where	 is the unit sphere, and the foreshortening projection
factor 〈−,−〉 represents the nonnegatively clamped dot prod-
uct if one-sided flakes are being used, or the absolute value
of the dot product if double-sided flakes are being used, and
ωo is actually the negative of the viewing ray direction, as
in the usual convention for representing BRDFs. According
to the reasoning in [20], this σt (x, ωo) is the extinction coef-
ficient, or volumetric attenuation coefficient, expressing the
fraction of flux intercepted by the flakes per (infinitesimal)
unit length. Figure2 (left) shows a slab of front face area 1 and

infinitesimal thickness ds, and thus with volume ds, a sam-
ple of microflakes from the distribution of normals h(x, ωn),
and their projections on the face of the slab closest to the
viewer. The slab thickness ds is assumed to be so small that
the chance that the microflake projections overlap each other
approaches zero. Therefore, sum of their projected areas is
the slab’s opacity, expressed by multiplying Eq. (3) by the
slab volume ds to convert area per unit volume to area in the
slab. So the slab’s transparency is 1 − σt (x, ω0)ds.

To compute the inscattering, let f (ωi , ωo;ωn) be the
BRDF of a microflake with normal ωn . Accounting for both
the foreshortening in the incident directionωi (for irradiance)
and in the viewing direction ωo (for viewing visibility), the
inscattering per unit length along the viewing ray is

S(x, ωo)

=
∫

	

∫

	

h(ωn) f (ωi , ωo;ωn)〈ωn, ωi 〉〈ωn, ωo〉
L(x, ωi )dωndωi , (4)

where L(x, ωi ) is the incoming radiance at x coming from
direction ωi . See the right half of Fig. 2, where the colors
represent the microflakes’ reflected radiance in direction ωo.

The quantities σt (x, ωo) and S(x, ωo) are used to com-
pute the volume rendering integral along the viewing ray in
direction −ωo, by integrating this inscattering contribution
along the ray, as attenuated by the transparency between each
slab and the viewpoint E :

L(E, ωo)=
∫ D

0
exp

(
−

∫ s

0
(σt (x(t), ωo)dt

)
S(x(s), ωo)ds,

(5)

where x(t) = E − tωo is the arclength parametrization of
the ray leaving the viewpoint E in direction −ωo, and D
is the parameter at which this ray hits a hard surface or
exits the SVO data volume. See [20] for a detailed deriva-
tion. As shown by the equations above, the extinction and
inscattering depend on the distribution of visible normals,
due to the foreshortening factor 〈ωn, ωi 〉. However, the full
geometric attenuation factor accounting for shadowing and
masking when considering surface microfacets is not present
here, because these effects are instead included in the volume
attenuation calculations in Eq. (5) above, and in computing
similarly howmuch light from a distant source reaches x and
contributes to L(x, ωi ) in Eq. (4).

As is usual in volume rendering, we numerically compute
the integral in equation (5) by marching along the viewing
ray through the octree, determining the successive segments
in which it intersects cells at the level locally appropriate
to its ray differential, and incrementally accumulating the
transparency
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Fig. 2 Left extinction in a slab
of area 1 and infinitesimal
thickness ds, Right inscattering
in that slab

Fig. 3 Mutually occluding microflakes in a slab of finite thickness 
s

T (s) = exp

(
−

∫ s

0
(σt (x(t), ωo)dt

)
(6)

and also the ray segment’s contribution to the radiance arriv-
ing at E in Eq. (5).

We assume that h(x, ωn), and therefore σ(x, ωo) and
S(x, ωo), are constant in each cell, so we leave the location
x out of the equations below. If the ray segment has length

s, the update for T should not just be T = T × (1−σt
s),
accounting for the unoccluded fraction of the slab face in
Fig. 2, because 
s is not infinitesimal, and the projected
microflakes can overlap, as shown in Fig. 3. It is more accu-
rate to compute the segment transparency integral

Tseg = exp

(
−

∫ 
s

0
(σt (ωo)dt

)

= exp(−σt (ωo)
s) (7)

which accounts for this overlap. Then, we use the update T =
T × Tseg. Similarly, instead of incrementing L(E, ωo) by
T×S(x, ωo)×
s as is sometimes done in volume rendering,
it is more accurate to compute the inscattering integral from
the segment analytically, as

Lseg =
∫ 
s

0
exp

(
−

∫ s

0
(σt (ωo)dt

)
S(ωo)ds

= S(ωo)

∫ 
s

0
exp(−σt (ωo)s)ds

= S(ωo)(1 − exp(−σt (ωo)
s))/σt (ωo)

= (S(ωo)/σt (ωo))(1 − Tseg). (8)

The expression in the final line just above can be interpreted
in Fig. 3. Without accounting for overlap, S(ωo)
s is the
summed radiance times projected area of the microflakes,
and σt (ωo)
s is the summed projected area. So the fraction
S(ωo)/σt (ωo) is the projected area-weighted average radi-
ance of the microflakes. Since the depth order for occlusion
is random, this is also the average radiance of the colored
segments shown in Fig. 3 on the slab face. The area not cov-
ered by these segments is Tseg, so the area that is covered is
1 − Tseg. Thus, the inscattered radiance Lseg in equation (8)
is the average radiance times the area covered. The update
to L(E, ωo) in equation (5) to include this segment’s con-
tribution is L(E, ωo) = L(E, ωo) + T × Lseg where T is
the accumulated transparency of all the previous segments,
before being updated to include the current one.

Now we discuss how to compute σt (x, ωo) and S(x, ωo)

for each of the three methods for approximating h(x, ω) in a
cell. For method (a), the distribution of normals is a sum of
weighted δ-functions, with weights c j , in directions ω j :

h(x, ω) =
k∑

j=1

c jδ(ω − ω j ). (9)

Substituting into equation (3), the extinction is

σt (x, ωo) =
k∑

j=1

c j 〈ω j , ωo〉. (10)

For a perfectly diffuse surface with albedo α and thus
diffuse BRDF α/π , and a small light source in direction ωi

whose radiance times subtended solid angle at x is I , equation
(4) for the inscattering gives

S(x, ωo) = Iα

π

k∑

j=1

c j 〈ω j , ωo〉〈ω j , ωi 〉. (11)
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Specular reflection can be handled similarly, using the vari-
ance of the polygon fragment normals clustered with each of
the k representative normals, calculated when constructing
the octree, to determine the width and maximum radiance of
each specular peak.

For method (b), the integral for the extinction coefficient
in equation (3) of the SH expansion for the microflake nor-
mal density times the clamped cosine can be computed as a
weighted sum of the spherical harmonic basis functions eval-
uated at the viewing direction, according to Sect. 4 of [26]
[See Eq. (15) in the “Appendix” below]. If the two clamped
cosines in the integral for the inscattering in Eq. (4) are both
expanded in spherical harmonics as in [26], this integral can
be expressed as a weighed sum of triple product integrals
of spherical harmonic basis functions [See the “Appendix”,
equation (16)]. Most of these triple product integrals are zero
for the higher orders, and we precomputed the rest and stored
them in a sparse array. Jacob et al. [13] also discussed the
above method of computing the extinction coefficient from
a spherical harmonic representation, but not how to compute
the inscattering integral.

For microfacet-generated mirror reflection, we need to
evaluate the spherical harmonic visible microfacet normal
density approximation 〈ω,ωo〉h(ω) at the half angle direc-
tion ω = ωh = (ωi + ωo)/|ωi + ωo| that specifies the
microfacet normal which reflects light from direction ωi

into direction ωo, as in [30] and [3]. We must multiply by
the change of variables factor dωh/dωo = 1/(4〈ωh, ωi 〉) as
given in [27] and explained in the introduction to Chap.7 of
[16] and briefly in [31]. Since 〈ωh, ωo〉 = 〈ωh, ωi 〉 these two
factors cancel.

For method (c), we use the routines in [7]. For the pro-
jected microflake area in the viewing direction in equation
(3), we take the square root of the quadratic form of squared
projected areas, evaluated at the viewing direction. The per-
fect mirror microflake specular reflection can be found from
the microflake normal distribution evaluated at the half angle
directionωh as inmethod (b) above. This distribution is given
by equations (24), (11), and (12) of [8]. The diffuse reflec-
tion is more difficult, because, unlike methods (a) and (b), an
analytic expression for the integral in Eq. (4) is not known,
even for a point or directional light source. So as proposed in
[8], we instead sample the distribution of visible normals (see
the next section) and use the diffuse BRDF for a flat surface
with the resulting normal. This technique introduces noise,
however, and is only useful in a context where multiple ray
samples per pixel are already being used for other purposes
like anti-aliasing, depth of field, or global illumination. We
may also need to use it for the spherical harmonics method
(b), if there are double-sidedmicroflakes. (See Sect. 6 below.)

5 Computing sample directions for global
illumination

To efficiently compute inscattered illumination from a whole
environment sphere 	 in equation (4), or the next bounce
direction in path tracing methods for global illumination by
Monte Carlo integration, once the Monte Carlo volume ren-
dering algorithm determines that volume scattering should
take place (see [15]), we need to importance-sample the
distribution of scattering directions ωi for a viewing ray or
continuing path direction −ωo. This involves first sampling
a normal from the distribution of visible microfacet normals
〈ωo, ωn〉h(x, ωn), or rather the normalized probability dis-
tribution proportional to it, and then sampling the BRDF for
a flat microflake surface with this normal.

For method (a), we generate a random number uniformly
distributed in the interval [0, 1], use it with the inverse of
the cumulative distribution of the visible normal probabilities
〈ω j , ωo〉c j/∑〈ω j , ωo〉c j to chose surface j with probability
proportional to 〈ω j , ωo〉c j , and then sample the BRDF for a
surface with normal ω j .

Formethod (b),we show in equation (18) of the “Appendix”
that the importance of the incoming radiance from the next
diffuse bounce direction also has an SH representation, with
coefficients computed fromωo and the SH coefficients of the
microflake normal distribution. Thus, we can use the algo-
rithm of [14] for sampling spherical harmonics distributions.
It divides the (φ, θ) range of the unit sphere iteratively into
quadrants as in a quadtree, integrates the distribution over
each quadrant (using precomputed tables), and uses a ran-
dom number for the inverse cumulative distribution method
to choose a quadrant at each stage of the iteration.

One problem with this sampling algorithm is that the best
spherical harmonic fit of a nonnegative function on the unit
sphere can have some negative values, due to ringing. In
our implementation, quadrants with negative integrals are
given probability zero, and the probabilities of the remain-
ing quadrants are normalized to add up to one. However,
when negative lobes of the SH function cause distortions in
the distribution of our samples by inappropriately decreasing
the probability of sampling the positive lobes in a quadrant,
we resort to rejection sampling, precomputing and saving
in each octree cell the maximum of its spherical harmonic
fitting function. The rejection test rejects samples with nega-
tive function values and produces directions with probability
proportional to positive function values.

For method (c), we use the sampling algorithm in Sect. 1.6
of [7].
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6 Double-sided microflakes

In our application, the vegetation leaf polygons are shaded
on both sides with the same color, as is the case for the
microflakes in [13]. For method (a), we can take advantage
of this and use a smaller number k of representatives of the
microflake normals, by comparing both a new normal n and
its negative −n with all the representatives when choosing
the closest. Then, when shading, we can use either the repre-
sentative normal, or its negative, whichever is front-facing.

For method (b), we can conceptually use the δ-functions
with both n and −n when computing the spherical harmonic
representation, as in Sect. 3. The basis functions Ylm(n) are
even functions of the unit vector n, i.e., Ylm(−n) = Ylm(n),
when l is even, and odd functions of n, i.e., Ylm(−n) =
−Ylm(n), when l is odd. Thus, when summing the contribu-
tions from n and−n, all terms with odd l disappear, and only
(�L/2�+1)(2�L/2�+1) terms remain, which for large L is
about half of the total (L+1)2. For order L = 4, there remain
only 15 terms instead of 25. This saves both space and com-
putation time. However, when Eq. (16) in the “Appendix” is
applied to the shading of a double-sided smooth surface we
get an effect like double-sided lighting (as if from direction
−ωi as well as ωi , see Fig. 10), because the reversed nor-
mal also contributes to the shading. To avoid this, we can
shade by sampling the visible normal distribution, reversing
the resulting normal if it has a negative dot product with ω0,
and then applying the BRDF for a surface with this normal.
This normal sampling introduces noise, as with the shad-
ing for the ellipsoid method. An alternative is to keep all
(L + 1)2 terms, and apply Eq. (16) twice, using the single-
sided clamped version of the 〈ωn, ωi 〉 and 〈ωn, ωo〉 factors,
and for the second time reversing both the viewing and light-
ing directions, which is equivalent to reversing the normal.
On the other hand, the double-sided lighting may actually be
appropriate for vegetation leaves, if diffuse transmission is
considered, as well as diffuse reflection.

Method (c) naturally represents double-sidedmicroflakes,
since the ellipsoids are centrally symmetric and reflect from
all sides.

7 Compression

In order to reduce the size of our SVO, we compress the data
inside each cell after octree construction and dynamically
decompress the requested values as rendering occurs.We use
the Best Fit Normal [19] method to compress normals, and a
dictionary-based method to compress other related floating
point numbers.

Best Fit Normal compresses a 3-float normal (12 bytes) to
3 bytes, achieving a compression ratio of 4. Essentially, this
method assigns a normal to the best fit voxel’s index within a

voxel space of size 2563. The trick is how to find the best fit-
ting voxel for each unit normal. To do this, instead of treating
the normal as a unit vector, we treat it as a ray with arbitrary
length. We start this ray at the center of the 2563 voxel space
and then walk along it. For every voxel intersected by the
ray, we compute the distance from that voxel center to the
ray and assign the index of the closest voxel to the normal
as its compressed form. The decompression of such a form
amounts to a subtraction and a normalization.

Our dictionary-based compression scheme takes in a set of
floats, builds a dictionary, and assigns each float to its closest
entry in the dictionary. To build the dictionary, we use an
approximate k means method [18] for fast clustering, and
extract N entries as specified by the user. For a single float,
the compression ratio is then32/�logN�bits.Decompression
is merely a lookup in the dictionary. We use this method for
color components, and normal variance.

For compressing the 6 coefficients of the quadratic form in
method (c), we use the suggestion of [8]. We take the square
root of the absolute value, give it the sign of the original
coefficient, and then convert it to a 16 bit half float [17]. For
method (a), we specify each weighted representative normal
as a scalar weight multiplying a unit normal vector, and use
the Best Fit Normal method above for the unit normals. We
use the half float of the square root for the scalar weights
and the variances, and also for the spherical harmonics coef-
ficients for method (b).

8 Results

We tested the methods described above on several tree
models, including a broad-leafed cottonwood tree and a
needle-leafed lodgepole pine. For the cottonwood “ground
truth” images, we ray traced the full polygonal model at 8 by
8 supersampling resolution.We also generated images by ray
tracing in the SVO, using the hard surface representation for
the leaves, as well as for the trunks and branches. Then, we
generated octrees and images using the hard surface repre-
sentation for the trunk and branches, and ray tracing through
the microflake volume density for the leaves, using the three
approximations methods discussed above for the distribution
of microflake normals. The octrees had resolution 10243.We
tested the spherical harmonic method for both order L = 2
with 9 basis functions and for order L = 4, with 25 basis
functions, and tested all methods at both 8 by 8 supersam-
pling (with a correspondingly reduced ray differential), and
without supersampling,where the summarization qualities of
the SVO are more important. Figure4 shows the cottonwood
tree in 640 by 640 pixel resolution images with 8 by 8 super-
sampling, which used the lowest level leaf cells of the octree
when ray tracing. Note that the shading is washed out for the
L = 2 spherical harmonics, because the distribution of nor-
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Fig. 4 Cottonwood tree, at 640 by 640 resolution, and 8 by 8 supersampling. From left to right ground truth image from original polygons, hard
surface image from SVO, k means with k = 3, SH with L = 2, SH with L = 4, and ellipsoidal microflakes

Fig. 5 Cottonwood tree, at 200 by 200 resolution, and no supersam-
pling except for the ground truth image which is 8 by 8 supersampled.
Top row from left to right ground truth image from original polygons,
hard surface image from SVO, k means with k = 3, SH with L = 2,

SH with L = 4, and ellipsoidal microflakes. Bottom row differences of
the rightmost five images in the top row and the leftmost ground truth
image, magnified by a factor of five, with neutral gray representing zero

mals is too band limited. Figure5 shows non-supersampled
images at 200 by 200 resolution, on the sameoctrees as Fig. 4,
where the much larger ray differentials cause the higher level
internal nodes of the octree to be used. Both figures are
without any shadows. The second row in Fig. 5 shows the
differences between the SVO-based images in the first row
and the ground truth ray traced and supersampled polygon-
based image of the same resolution, multiplied by five.

For the lodgepole pine, we expanded the vertices of
the polylines defining the curved pine needles into regular
hexagons, so that the needle segments were represented by
approximate hexagonal prisms. This means that the distri-
bution of the normals to the six prism faces for a single
needle segment can be exactly represented by the k means
approximation with k = 3, when vectors of exactly opposite
directions are considered equivalent. The octrees had resolu-
tion 5123. Figure6 shows 200 by 400 resolution images. At
the left is a ray traced image of the polygonal model, at 40
by 40 supersampling, and the subsequent images are from
the SVO, using the different microflake normal distribution
approximations, with 2 by 2 supersampling. The second row
again shows differences.

Tables1, 2, and 3 show the performance statistics for gen-
erating the images in Figs. 4, 5, and 6, respectively. The SVO
sizes are in bytes, and the RMS errors are for the 3 floating
point color components in the range from0 to 1, including the
sky and ground regions with no error. Table2 used the same
octrees as Table1. The timings were done on an HP Z800
workstation with 12 Intel Xeon X5660 2.88GHz cores. The
octree construction was serial, but the ray tracingwas done in
parallel using 10 cores, with the other 2 for task management
and systemcalls. For the cottonwood tree, the rendering times
were per frame and do not include initialization and loading
the precomputed octree, while for the lodgepole pine, these
initialization and loading times are included.

Figure7 shows the cottonwood tree with shadows at 400
by 400 resolution, with 4 by 4 supersampling, rendered from
a 5123 SVO using the k means method (a) with k = 3. The
left-hand image used ray traced shadows and took 346.2 s
to render. For the right-hand image, we first propagated the
illumination into the leaf cells of the SVO by tracing a grid of
2068 by 1462 rays from the light source through the octree,
depositing in each intersected cell the ray segment length
and the length-weighted attenuated flux it carried. After all
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Fig. 6 Lodgepole pine tree, at 200 by 400 resolution. Top row from
left to right ground truth image from original polygons; hard surface
image from SVO; k means microflakes with k = 3; spherical harmonics
microflakes with L = 4 with all 25 terms, and double-sided shading
as in Sect. 6; spherical harmonics microflakes with L = 4 with only

the 15 odd order terms, shaded by sampling from the microflake nor-
mal distribution; and ellipsoidal microflakes. Bottom row differences of
the rightmost five images in the top row and the leftmost ground truth
image, magnified by a factor of five

Table 1 Statistics for cottonwood tree images at 640 by 640 resolution,
with 8 by 8 supersampling

Method SVO size RMS SVO tm Render

Hard surface 1,062,142,164 0.0449 7:24 17.87

k means 2,468,438,261 0.0450 3:44 20.05

SH: L = 2 2,012,479,768 0.0454 8:13 45.19

SH: L = 4 2,906,925,160 0.0442 8:34 146.64

Ellipsoidal 2,347,893,040 0.0451 9:57 30.07

The last two columns show SVO construction time, in minutes:seconds,
and rendering time, in seconds

Table 2 Statistics for cottonwood tree at 200 by 200 resolution

Method 64 RMS 64 Render 1 RMS 1 Render

Hard surface 0.0449 1.805 0.0857 0.097

k means 0.0449 2.036 0.0858 0.096

SH: L = 2 0.0464 4.531 0.0640 0.133

SH: L = 4 0.0464 14.336 0.0633 0.313

Ellipsoidal 0.0464 3.150 0.0670 0.105

RMS errors with the ray traced polygonal model and rendering times
in seconds are shown for 64 samples per pixel, and 1 sample per pixel

Table 3 Statistics for lodgepole pine at 200 by 400 resolution

Method SVO size RMS SVO tm Render

Hard surface 123,734,707 0.067 13:54 0.48

k means 190,884,125 0.056 16:54 1.16

SH: 25 terms 201,329,829 0.050 15:49 1.58

SH: 15 terms 180,358,269 0.062 16:04 1.42

Ellipsoidal 178,261,368 0.057 34:29 1.97

The last two columns show SVO construction time, in minutes:seconds,
and rendering time, in seconds

Fig. 7 Cottonwood tree with shadows. Left By ray tracing from each
shaded point, and right precomputed shadows
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Fig. 8 Path traced beech tree. Left reflection plus transmission, right
transmission only

rays were propagated, we divided the accumulated flux in
each leaf cell by the accumulated length and averaged this
illumination up the octree hierarchy. This illumination pre-
computation took 13.6 s, and then the rendering took 60.1 s.
The flux propagation was done in parallel, by dividing the
grid of rays up into square subregions indexed by column
i and row j , and doing four passes, with pass k including
only the squares with (i mod 2) + 2( j mod 2) = k. Squares
were assigned to different threads, and since the squares in
each pass were well separated, there was no hazard from two
threads attempting to simultaneously add to the flux or length
in the same octree cell.

Figure1 shows a forest of 218 trees of various species, ren-
dered by path tracing. The next direction for each path was
chosen by sampling a surface normal from the spherical har-
monics microflake distribution using only the 15 even terms
up to L = 4, reversing the normal if it was not facing the
viewer, and then sampling from the diffuse BRDF with that
normal. Please see the supplemental material videos showing
path traced 360 frame cycles with the camera rotating around
the center of this forest, using the various methods discussed
in this paper, and also a camera dolly showing smooth tran-
sition between octree levels.

Figure8 shows a path traced 500 by 500 image of a beech
tree with double-sided microflakes from an SH representa-
tion with L = 4. The left-hand image includes both the
diffuse reflection and the diffuse transmission, while the
right-hand image includes only the diffuse transmission, to
show its contribution. The main visible effect of the path
tracing is the illumination from the sky, particularly evident
in the shadows. The supplementary material also includes a
path traced video with the camera rotating around this tree.

Figure9 shows images of a head model with 60,000 hairs,
each represented by a polygonal quadmesh on a curved cylin-
der following a Bezier curve, with 25 segments along the
curve and 12 around the circular cross section. They are ren-
dered at 250 by 250 resolution, with 6 by 6 supersamples
except for the left-hand ground truth image, in which the
original polygonal representation was ray traced at 20 by

20 supersamples. The polygon mesh file was 1,355,638,498
bytes. The images in the top rowwere rendered from uncom-
pressed octrees. Table4 gives the octree sizes for these
images, and the RMS errors to ground truth and from com-
pression. The construction and rendering times shown in
Table4 were on a 4 core machine. The construction times
includeprecomputing the illumination, and compression, and
the compressed rendering times in the last column include
decompression. The octree resolution was only 2563 so
that each octree cell intersected multiple hairs, stressing the
both the summarization ability of the different representa-
tion methods, and also their compression accuracy. Moon et
al. [22] also used spherical harmonics for rendering hair, but
used them to store the incoming multiple scattered radiance
at each cell, as computed from a Monte Carlo simulation,
rather than to store the distribution of microflake normals.

Figure10 shows a sphere, rendered as a hard surface by
adjusting the extinction and inscattering computations, at the
first nonempty cell the viewing ray encounters, to represent a
completely opaque surface with the probability distribution
of normals given by the approximated h(x, ωn). The hard
surface and k means method agree with the “ground truth”
image ray traced from the polygonal model. The spherical
harmonics method shows a main highlight that is too broad,
and also a spurious highlight ring near the profile, caused by
a positive ringing lobe in the SH fit, and also by the effect of
“double-sided lighting” from the double-sided microflakes.
This spurious highlight is mostly removed by the precom-
puted shadows. The ellipsoidal microflake method is more
effective, but must still broaden the surface normal distri-
bution somewhat, because an almost flat ellipsoid generates
floating point exceptions or numerical problems in the cal-
culations and cannot be used. Thus, the shadow terminator
is softer than in the ground truth image.

9 Discussion

Bruneton and Neyret [1] survey methods of prefiltering
surface properties, specifically discussing distributions of
microfacet normals in their Sect. 3, and a more general clas-
sification of prefiltering methods into three classes in their
Sect. 7. In terms of that classification, our method (a) using
the variance is a spanning set method, our method (b) is a
basis function method, and our method (c) appears to be a
moment method, like those of Olano et al. [24] and [25].
However, the ellipsoids of [8] represent projected microflake
area, instead of the unprojected area-weighted normals in
[25]. As mentioned above, this means that the coefficients
do not add linearly when the distributions of child cells are
combined into their parent cell. On the other hand, the 3D
covariance method of [25] gives the same information as our
spherical harmonic method with L = 2. In general, since the
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Fig. 9 Head with hair: top row from left to right ground truth image
ray traced from the polygonal model, hard surfaces, k means with k =
3, SH with L = 4, and ellipsoidal microflakes.Middle row differences
between the image in the top row and the ground truth image on the left,

scaled by a factor of 5, with zero as the neutral gray in the background.
Bottom row differences between the image rendered from a compressed
octree and the corresponding image in the top row, scaled by 5

Table 4 Statistics for compression

Method SVO size Compr. size Polygons RMS Compr. RMS Constr. tm (s) Render tm (s) Compr. rend (s)

Hard surface 165,151,806 64,001,340 0.1293 0.0196 457 3.02 4.76

k means 410,912,420 108,682,498 0.1126 0.0061 596 9.63 86.3

SH: 25 terms 432,539,169 166,440,279 0.0927 0.0467 568 21.1 147.9

Ellipsoidal 388,167,513 84,975,047 0.0976 0.0185 1088 21.1 36.1

Construction time includes SVO construction, precomputed illumination, and compression

Fig. 10 From left to right a sphere rendered from polygons, hard sur-
faces, k means with k = 3, spherical harmonics with L = 4 and only
even-ordered terms (showing the effects of double-sided microflakes),

spherical harmonics with L = 4 and only even-ordered terms with pre-
computed shadows to suppress the spurious highlights, and ellipsoidal
microflakes
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spherical harmonics of order up to L are a basis for the poly-
nomials in x , y, and z on the unit sphere of degree up to L ,
our method (b) is equivalent to the moment method of [1].

For the cottonwood tree at one sample per pixel and 200 by
200 resolution, simulating a distant view, the L = 4 spherical
harmonics method has lowest error, although it requires most
processing time. However, this test puts the ellipsoid method
at a disadvantage, since a single sampled normal per pixel,
required because there is no analytic integral for the diffuse
reflectance from this distribution, introduces a lot of noise.
For the lodgepole pine tree, we used 2 by 2 supersampling,
and the noise in the ellipsoid method is less. For this model,
the SH method with all 25 terms up to L = 4 had the least
RMS error, but its SVO used the most storage.

For the top left image in Fig. 6, the optimized Embree
ray tracer, running in parallel on the same 12 core machine,
took 12.42 s to create its acceleration structure and ray trace
the 200 by 400 image at 40 by 40 supersamples per pixel.
Thus, the times quoted in Table3 are not a significant speed
improvement. However, the acceleration structure for ray
tracing the scene in Fig. 1 with Embree could not fit in mem-
ory. The model for Fig. 1 was in fact created from rotated
and translated copies of the same four trees, but if every tree
was different, its data size would be unmanageable, while
even the uncompressed SVO sizes are practical for render-
ing, varying from 1,670,384,307 bytes for the hard surfaces
to 2,717,912,229 bytes for the 25 SH terms up to L = 4, at
10243 voxel resolution.

The bottom row of difference images in Fig. 9 and the
RMS errors from Table4 show that the compression does
not introduce much error. The top row of images shows
visible artifacts from the SVO methods, particularly in the
highlights. When many hairs are in an octree cell, the single
average normal used in the hard surface method cannot ade-
quately represent them. The SH normals are better for diffuse
shading, but inadequate to represent the highlights, because
of the band-limiting effect of a practical maximum order L .
The k means method gives discontinuous shading unless the
starting angular phase for the 12 facets around the cylinder
is chosen randomly per hair, as was done for Fig. 9, so that
there are no preferred representative directions, but then the
highlights are noisy. As expected, since the distribution of
normals of a long thin ellipsoid is a good approximation to
that of coherently oriented hairs, the ellipsoidal method per-
forms best in this case.

The band-limiting effect of the SH approximation makes
the highlight too large in Fig. 10 as well as in Fig. 9. The SH
method performs better forwider,more general distributions,
where concentrated highlights do not occur. The k means
method would require more representatives to handle gen-
eral distributions. When the variance is taken into account, it
is similar to a gaussian mixture model. The iterative Expec-
tation Maximization method of fitting a gaussian mixture

Table 5 The suitability of the three approximation methods for differ-
ent sorts of distributions of microflake normals: + means suitable, −
means unsuitable, a blank means suitable, but not the best, and e means
could work with enough terms

Distribution type k means SH Ellipsoids

Smooth surface + −
One narrow peak + − +

One wide peak + +

Hair cylinders e +

Many peaks e e −
General e e −

model might give better approximations for the same data
size, but it would take much longer than the k means method.
Table5 summarizes the suitability of the three methods for
different sorts of applications.

Publications [9] and [10] consider microfacet height field
surface models where the color is correlated with the height
and can account for themasking effects related to this correla-
tion during rendering. None of the volumemicroflakemodels
we consider can account for this sort of volume masking,
because we assume that the summarized microflake proper-
ties are homogeneous within each octree cell.
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Appendix

In this appendix, we give some formulas for the spherical har-
monics calculations discussed above.Good references for the
mathematics of spherical harmonics as applied to computer
graphics are [28] and [5]. Sloan [28] gives simple formulas
for the Ylm(ω) in the form of polynomials of degree l in the
x , y, and z coordinates of the unit vector ω, which we used
in our implementation.

To compute the extinction integral in Eq. (3) using an
h(ω) of the form of Eq. (1), we expand the nonnegatively
clamped cosine of θ , A(θ), into spherical harmonics. Since
this function is independent ofφ, all the coefficientswithm 	=
0 are zero so we get just the “zonal” harmonics expansion

A(θ, φ) ≈
L∑

l=0

Al0Yl0(θ, φ) (12)

where, by Eq. (2),

Al0 = 2π
∫ π/2

0
Yl0(θ, φ) cosθ sinθ dθ dφ. (13)
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Ramamoorthi and Hanrahan [26] (please see the correc-
tion of their Eq. (19) at the bottom of the web page http://
cseweb.ucsd.edu/ravir/papers/invlamb/) give the formula for
the coefficients Al0, which are zero for odd l > 1, and
decrease rapidly for increasing even l. We have used only the
first few values A00 = √

π/2, A10 = √
π/3, A20 = √

5π/8,
A30 = 0, and A40 = −√

π/16.
This zonal harmonic expansion is only useful for evaluat-

ing Eq. (3) if ωo is at the north pole of the unit sphere. For
other directions of ωo, one must rotate this zonal harmonic
expansion so that its axis of symmetry is along the direc-
tion ωo. This is simpler for zonal harmonics than for general
spherical harmonics. According to [26], the result of rotating
the expansion in equation (12) to make the axis of symmetry
lie in the direction ωo = (θo, φo) is

Rθoφo A(θ, φ)

≈
L∑

l=0

l∑

m=−l

Ylm(θo, φo)

√
4π

2l + 1
Al0Ylm(θ, φ). (14)

Thus, if Eq. (1) is the spherical harmonic expansion of
the microflake normal density h(ω), by equation (3) and the
orthonormality of the SH basis functions,

σt (x, θo, φo) ≈
L∑

l=0

l∑

m=−l

Ylm(θo, φo)

√
4π

2l + 1
Al0hlm . (15)

The inscattering integral in Eq. (4) contains the clamped
cosine 〈ωn, ωi 〉 as well as 〈ωn, ωo〉, so if 〈ωn, ωi 〉 is also
expanded in spherical harmonics as in Eq. (14), we get, for
the perfectly diffuse reflection of a small light source from
direction ωi of radiance times solid angle equal to I ,

S(ωo)

=
∫

	

∫

	

h(ωn)
α

π
〈ωn, ωi 〉〈ωn, ωo〉L(ωi )dωndωi

= Iα

π

∫ 2π

0

∫ π

0
h(θ, φ)Rθiφi A(θ, φ)Rθoφo A(θ, φ)

sinθdθdφ

≈ Iα

π

∫ 2π

0

∫ π

0

L∑

l=0

l∑

m=−l

hlmYlm(θ, φ)

L∑

l ′=0

l ′∑

m′=−l ′
Yl ′m′(θo, φo)

√
4π

2l ′ + 1
Al ′0Yl ′m′(θ, φ)

L∑

l ′′=0

l ′′∑

m′′=−l ′′
Yl ′′m′′(θi , φi )

√
4π

2l ′′ + 1
Al ′′0Yl ′′m′′(θ, φ) sinθdθdφ

= Iα

π

L∑

l=0

l∑

m=−l

hlm

L∑

l ′=0

l ′∑

m′=−l ′
Yl ′m′(θo, φo)

√
4π

2l ′ + 1

Al ′0

L∑

l ′′=0

l ′′∑

m′=−l ′′
Yl ′′m′′(θi , φi )

√
4π

2l ′′ + 1
Al ′′0Tlml ′m′l ′′m′′

(16)

where Tlml ′m′l ′′m′′ is the “triple product integral”

Tlml ′m′l ′′m′′

=
∫ 2π

0

∫ π

0
Ylm(θ, φ)Yl ′m′(θ, φ)Yl ′′m′′(θ, φ) sinθ dθ dφ.

(17)

For order L = 4, the potential number of triple product
integrals is 253 = 15,625, not accounting for symmetries in
the indices, but only 1,158 of them are nonzero, and these
are precomputed and stored in a sparse table. In fact, since
A30 = 0, only 605 terms are actually included in the sum
in Eq. (16), and if the microflakes are double-sided, and we
approximate |cos(θ)| by A(θ, φ)+ A(−θ, φ), all terms with
l ′ = 1 or l ′′ = 1 also disappear, and only 585 terms remain.

Note that if ωo = (θo, φo) is fixed, grouping the terms
and factors from h(ωn)〈ωn, ωo〉 in the last form in Eq. (16)
into the large parentheses below gives a spherical harmonic
expansion in the direction variable ωi = (θi , φi ).

S(ωo)

=
L∑

l ′′=0

l ′′∑

m′′=−l ′′

(
Iα

π

L∑

l=0

l∑

m=−l

hlm

L∑

l ′=0

l ′∑

m′=−l ′
Yl ′m′(θo, φo)

×
√

4π

2l ′ + 1
Al ′0

√
4π

2l ′′ + 1
Al ′′0Tlml ′m′l ′′m′′

)
Yl ′′m′′(θi , φi )

(18)

Thus, it can be importance-sampled for path tracing using
the techniques of [14], or by rejection sampling. Note also
from this form that once the basis function coefficients in
the large parentheses have been computed, the inscattering
of illumination from multiple light sources can be com-
puted with only (L + 1)2 multiplications and adds for each.
For a light source “at infinity” with constant ωi , a dif-
ferent grouping of the terms involving instead the factors
〈ωn, ωi 〉〈ωn, ωo〉 can be computed once per viewing ray that
hits microflakes, allowing only (L + 1)2 multiplications per
octree cell (9.2 s for the image in Fig. 9 instead of 21.1). For
finite distance light sources, using more storage, the inscat-
tering and the extinction coefficient can be computed once
per voxel as first needed and saved for subsequent view-
ing rays crossing the same voxel (8.4 s for the image in
Fig. 9).
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